Next Launch

Total Students

2,609

Total Launches

683

Eggs Survived

418 61.2%

Rockets Survived

536 78.5%

April 1, 2013

Exploring the Water World

by Diane K. Fisher

In some ways, we know more about Mars, Venus and the Moon than we know about Earth. That's because 70% of our solar system's watery blue planet is hidden under its ocean. The ocean contains about 98% of all the water on Earth. In total volume, it makes up more than 99% of the space inhabited by living creatures on the planet.

As dominant a feature as it is, the ocean-at least below a few tens of meters deep-is an alien world most of us seldom contemplate. But perhaps we should.

The ocean stores heat like a "fly wheel" for climate. Its huge capacity as a heat and water reservoir moderates the climate of Earth. Within this Earth system, both the physical and biological processes of the ocean play a key role in the water cycle, the carbon cycle, and climate variability. This great reservoir continuously exchanges heat, moisture, and carbon with the atmosphere, driving our weather patterns and influencing the slow, subtle changes in our climate.

The study of Earth and its ocean is a big part of NASA's mission. Before satellites, the information we had about the ocean was pretty much "hit or miss," with the only data collectors being ships, buoys, and instruments set adrift on the waves.

Now ocean-observing satellites measure surface topography, currents, waves, and winds. They monitor the health of phytoplankton, which live in the surface layer of the ocean and supply half the oxygen in the atmosphere. Satellites monitor the extent of Arctic sea ice so we can compare this important parameter with that of past years. Satellites also measure rainfall, the amount of sunlight reaching the sea, the temperature of the ocean's surface, and even its salinity!

Using remote sensing data and computer models, scientists can now investigate how the oceans affect the evolution of weather, hurricanes, and climate. In just a few months, one satellite can collect more information about the ocean than all the ships and buoys in the world have collected over the past 100 years!

NASA's Earth Science Division has launched many missions to planet Earth. These satellites and other studies all help us understand how the atmosphere, the ocean, the land and life-including humans-all interact together.

Find out more about NASA's ocean studies at http://science.nasa.gov/earth-science/oceanography. Kids will have fun exploring our planet at The Space Place, http://spaceplace.nasa.gov/earth.

This article was written by Diane K. Fisher and provided through the courtesy of the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Arctic sea ice is shrinking fast. This image from September 2012, shows that the Arctic sea is the smallest recorded since record keeping began in 1979. This image is from NASA's Scientific Visualization Studio at Goddard Space Flight Center.

May 1, 2013

Triple Treat

by Dr. Ethan Siegel

The solar system is a busy place, with five wandering planets visible to the naked eye alone. When any two pass close by each other from our point of view, we see an astronomical conjunction, but on very rare occasions, three planets will find themselves grouped together: a triple conjunction. Towards the end of May, Mercury, Venus and Jupiter will treat us to the best triple conjunction in years.

On May 25th, Mercury will pass within 1.4 degrees of Venus, then two days later Mercury comes within 2.4 degrees of Jupiter, and finally on the 28th, Jupiter and Venus approach within 1 degree of one another. If it weren't for the slight orbital tilt of our solar system's planetary orbits, these conjunctions would all be occultations instead. During the nights of May 26th-27th, all three planets are visible immediately after sunset within the same 3 degrees field of view, with the triple conjunction peaking in a triangular shape on the 26th. (For scale, the full Moon subtends about 1/2 degree.) The three planets appear close together for a few days more, making a line in the sky on the 30th/31st.

How does this happen? Mercury and Venus race around the Sun far faster than Earth, with Mercury completing more than four revolutions around the Sun for each one that Earth makes. At the same time, Jupiter is far slower, taking 12 years to orbit just once around the Sun. Jupiter's been high in the sky during the early parts of the night, but steadily lowers throughout May as Earth continues to move away from it, approaching its maximum distance from Earth. Mercury and Venus, meanwhile, begin to move out from behind the Sun during May: Venus at the beginning of the month and Mercury in the middle.

Thus, during this triple conjunction, all three planets will be on the far side of the Sun, something that happens just 25% of the time in triple conjunctions involving Mercury and Venus! If you telescopically resolve these planets into disks, you'll see our inner worlds in a nearly-full gibbous phase. Jupiter will appear largest in terms of angular diameter, followed by Venus and lastly by Mercury. Just a year ago, during its now-famous transit, Venus took up more than a full arc-minute in the sky; during this conjunction, it will just one-sixth that angular size and less than a third the apparent diameter of Jupiter. Nevertheless, Venus will still be more than six times as bright as Jupiter during this time, outshining all night-sky objects other than the Moon. Closer conjunctions of two naked-eye planets are frequent, but getting three or more like this happens just once or twice per decade, so don't miss your chance to see it.

And speaking of occultations, The Space Place has a great kid-friendly explanation of the Venus transit and solar eclipses of 2012 at spaceplace.nasa.gov/venus-transit.

Dr. Ethan Siegel, a theoretical astrophysicist, is a professor at the University of Portland (OR) and Lewis & Clark College.

This article was provided by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Mercury, Venus and Jupiter will snuggle together in the sky May 26, 2013. The image shows the configuration of Mercury, Venus, and Jupiter in the western sky just after sunset on May 26, 2013. Insets show the relative size appearance of the planets on that date.

June 1, 2013

High-energy Spy

by Dr. Martin C. Weisskopf

The idea for the Chandra X-Ray Observatory was born only one year after Riccardo Giacconi discovered the first celestial X-ray source other than the Sun. In 1962, he used a sounding rocket to place the experiment above the atmosphere for a few minutes. The sounding rocket was necessary because the atmosphere blocks X-rays. If you want to look at X-ray emissions from objects like stars, galaxies, and clusters of galaxies, your instrument must get above the atmosphere.

Giacconi's idea was to launch a large diameter (about 1 meter) telescope to bring X-rays to a focus. He wanted to investigate the hazy glow of X-rays that could be seen from all directions throughout the sounding rocket flight. He wanted to find out whether this glow was, in fact, made up of many point-like objects. That is, was the glow actually from millions of X-ray sources in the Universe. Except for the brightest sources from nearby neighbors, the rocket instrument could not distinguish objects within the glow.

Giacconi's vision and the promise and importance of X-ray astronomy was borne out by many sounding rocket flights and, later satellite experiments, all of which provided years-, as opposed to minutes-, worth of data.

By 1980, we knew that X-ray sources exist within all classes of astronomical objects. In many cases, this discovery was completely unexpected. For example, that first source turned out to be a very small star in a binary system with a more normal star. The vast amount of energy needed to produce the X-rays was provided by gravity, which, because of the small star's mass (about equal to the Sun's) and compactness (about 10 km in diameter) would accelerate particles transferred from the normal star to X-ray emitting energies. In 1962, who knew such compact stars (in this case a neutron star) even existed, much less this energy transfer mechanism?

X-ray astronomy grew in importance to the fields of astronomy and astrophysics. The National Academy of Sciences, as part of its "Decadal Survey" released in 1981, recommended as its number one priority for large missions an X-ray observatory along the lines that Giacconi outlined in 1963. This observatory was eventually realized as the Chandra X-Ray Observatory, which launched in 1999.

The Chandra Project is built around a high-resolution X-ray telescope capable of sharply focusing X-rays onto two different X-ray-sensitive cameras. The focusing ability is of the caliber such that one could resolve an X-ray emitting dime at a distance of about 5 kilometers! The building of this major scientific observatory has many stories.

Learn more about Chandra at http://www.nasa.gov/mission_pages/chandra/main/#.VDAn9R_HmkA. Take kids on a "Trip to the Land of the Magic Windows" and see the universe in X-rays and other invisible wavelengths of light at spaceplace.nasa.gov/magic-windows.

Dr. Weisskopf is project scientist for NASA's Chandra X-ray Observatory. This article was provided by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

X-ray data made this image of Composite image of DEM L50, a so-called superbubble found in the Large Magellanic Cloud. X-ray data from Chandra is pink, while optical data is red, green, and blue. Superbubbles are created by winds from massive stars and the shock waves produced when the stars explode as supernovas.

July 1, 2013

Inventing Astrophotography: Capturing Light Over Time

by Dr. Ethan Siegel

Here in our own galactic backyard, the Milky Way contains some 200-400 billion stars, and that's not even the biggest galaxy in our own local group. Andromeda (M31) is even bigger and more massive than we are, made up of around a trillion stars! When you throw in the Triangulum Galaxy (M33), the Large and Small Magellanic Clouds, and the dozens of dwarf galaxies and hundreds of globular clusters gravitationally bound to us and our nearest neighbors, our local group sure does seem impressive.

Yet that's just chicken feed compared to the largest structures in the universe. Giant clusters and superclusters of galaxies, containing thousands of times the mass of our entire local group, can be found omnidirectionally with telescope surveys. Perhaps the two most famous examples are the nearby Virgo Cluster and the somewhat more distant Coma Supercluster, the latter containing more than 3,000 galaxies. There are millions of giant clusters like this in our observable universe, and the gravitational forces at play are absolutely tremendous: there are literally quadrillions of times the mass of our Sun in these systems.

The largest superclusters line up along filaments, forming a great cosmic web of structure with huge intergalactic voids in between the galaxy-rich regions. These galaxy filaments span anywhere from hundreds of millions of light-years all the way up to more than a billion light years in length. The CfA2 Great Wall, the Sloan Great Wall, and most recently, the Huge-LQG (Large Quasar Group) are the largest known ones, with the Huge-LQG -- a group of at least 73 quasars -- apparently stretching nearly 4 billion light years in its longest direction: more than 5% of the observable universe! With more mass than a million Milky Way galaxies in there, this structure is a puzzle for cosmology.

You see, with the normal matter, dark matter, and dark energy in our universe, there's an upper limit to the size of gravitationally bound filaments that should form. The Huge-LQG, if real, is more than double the size of that largest predicted structure, and this could cast doubts on the core principle of cosmology: that on the largest scales, the universe is roughly uniform everywhere. But this might not pose a problem at all, thanks to an unlikely culprit: dark energy. Just as the local group is part of the Virgo Supercluster but recedes from it, and the Leo Cluster -- a large member of the Coma Supercluster -- is accelerating away from Coma, it's conceivable that the Huge-LQG isn't a single, bound structure at all, but will eventually be driven apart by dark energy. Either way, we're just a tiny drop in the vast cosmic ocean, on the outskirts of its rich, yet barely fathomable depths.

Learn about the many ways in which NASA strives to uncover the mysteries of the universe: http://science.nasa.gov/astrophysics/. Kids can make their own clusters of galaxies by checking out The Space Place's fun galactic mobile activity: http://spaceplace.nasa.gov/galactic-mobile/

This article was provided by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Great Nebula in Andromeda, the first-ever photograph of another galaxy. Image taken by Isaac Roberts in 1888. Great Nebula in Andromeda, the first-ever photograph of another galaxy. Image credit: Isaac Roberts, taken December 29, 1888, published in A Selection of Photographs of Stars, Star-clusters and Nebulae, Volume II, The Universal Press, London, 1899.