Next Launch

Total Students


Total Launches


Eggs Survived

418 61.2%

Rockets Survived

536 78.5%

March 1, 2012

The Planet in the Machine

by Diane K. Fisher and Tony Phillips

The story goes that a butterfly flapping its wings in Brazil can, over time, cause a tornado in Kansas. The "butterfly effect" is a common term to evoke the complexity of interdependent variables affecting weather around the globe.  It alludes to the notion that small changes in initial conditions can cause wildly varying outcomes. 

Now imagine millions of butterflies flapping their wings.  And flies and crickets and birds.  Now you understand why weather is so complex.

All kidding aside, insects are not in control.  The real "butterfly effect" is driven by, for example, global winds and ocean currents, polar ice (melting and freezing), clouds and rain, and blowing desert dust.  All these things interact with one another in bewilderingly complicated ways.

And then there's the human race. If a butterfly can cause a tornado, what can humans cause with their boundlessly reckless disturbances of initial conditions?

Understanding how it all fits together is a relatively new field called Earth system science. Earth system scientists work on building and fine-tuning mathematical models (computer programs) that describe the complex inter-relationships of Earth's carbon, water, energy, and trace gases as they are exchanged between the terrestrial biosphere and the atmosphere.  Ultimately, they hope to understand Earth as an integrated system, and model changes in climate over the next 50-100 years. The better the models, the more accurate and detailed will be the image in the crystal ball.

NASA's Earth System Science program provides real-world data for these models via a swarm of Earth-observing satellites.  The satellites, which go by names like Terra and Aqua, keep an eye on Earth's land, biosphere, atmosphere, clouds, ice, and oceans.  The data they collect are crucial to the modeling efforts.

Some models aim to predict short-term effects--in other words, weather.  They may become part of severe weather warning systems and actually save lives. Other models aim to predict long-term effects--or climate.  But, long-term predictions are much more difficult and much less likely to be believed by the general population, since only time can actually prove or disprove their validity.  After all, small errors become large errors as the model is left to run into the future.  However, as the models are further validated with near- and longer-term data, and as different models converge on a common scenario, they become more and more trustworthy to show us the future while we can still do something about it—we hope.

For a listing and more information on each of NASA's (and their partners') Earth data-gathering missions, visit Kids can get an easy introduction to Earth system science and play Earthy word games at

This article was provided by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Still image from 3-D animated data simulation showing vertical structure of clouds. CloudSat is one of the Earth-observing satellites collecting data that will help develop and refine atmospheric circulation models and other types of weather and climate models. CloudSat’s unique radar system reads the vertical structure of clouds, including liquid water and ice content, and how clouds affect the distribution of the Sun’s energy in the atmosphere. See animation of this data simulation at

April 1, 2012

NASA Helps Europe Study a Comet–Up Close and Personal

by Dr. Tony Phillips

Europe’s Rosetta spacecraft is on its way to intercept comet 67P/Churyumov-Gerasimenko. Comets have been intercepted before, but this mission is different. Rosetta aims to make history by landing a probe on the comet’s surface while the mother ship orbits overhead.

“Rosetta is the European equivalent of a NASA flagship mission,” explains Claudia Alexander, project scientist for the U.S. Rosetta Project at NASA's Jet Propulsion Laboratory. “It will conduct the most comprehensive study of a comet ever performed.”

Rosetta’s payload contains 21 instruments (11 on the orbiter, 10 on the lander) designed to study almost every aspect of the comet’s chemistry, structure, and dynamics. Three of the sensors were contributed by the U.S.: Alice (an ultraviolet spectrometer), IES (an ion and electron sensor), and MIRO (a microwave sounder).

The main event of the mission will likely be the landing. The 100-kg lander, which looks a bit like a cross between NASA’s old Viking Mars landers and a modern microsatellite, will spend two weeks fastened to the comet’s icy surface. The European-built probe will collect samples for analysis by onboard microscopes and take stunning panoramic images from ground level.

“First the lander will study the surface from close range to establish a baseline before the comet becomes active,” explains Alexander. “Then the orbiter will investigate the flow of gas and dust around the comet's active, venting nucleus.”

Rosetta’s sensors will perform the experiments that reveal how the chemicals present interact with one another and with the solar wind. Alice and MIRO detect uncharged atoms and molecules, while IES detects the ions and electrons as the solar wind buffets the nucleus.

One problem that often vexes astronomers when they try to study comets is visibility. It’s hard to see through the dusty veil of gas billowing away from the heated nucleus. The microwaves MIRO detects can penetrate the dust, so MIRO can see and measure its target molecules even when other instruments can’t.

MIRO is one of several experiments focused on the comet’s structural properties. It will determine the comet’s dielectric constant, emissivity, and thermal conductivity to determine whether it is made of a powdery loose material, has a detectable layer of loose material, or is hard as rock.

“We want to find out whether comets have retained material from when the solar system formed,” says Alexander. “If the ancient materials are still there, we can get an idea of what conditions were like at the dawn of the solar system.”

Rosetta enters orbit in 2014. Stay tuned for updates!

Check out “Comet Quest,” the new, free iPhone/iPad game that has you operating the Rosetta spacecraft yourself. Get the link at

This article was provided by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Rosetta will drop a lander on a comet's nucleus and observe how the comet changes as it approaches the Sun. Rosetta’s lander Philae will eject from the spacecraft, touch down on the comet’s nucleus, and immediately fire a harpoon into the surface to anchor itself so it won’t drift off in the weak gravity.

May 1, 2012

Thank Goodness for Magnetism

by Dr. Tony Phillips

Only 93 million miles from Earth, a certain G-type star is beginning to act up.

Every 11 years or so, the solar cycle brings a period of high solar activity. Giant islands of magnetism—”sunspots”—break through the stellar surface in increasing numbers. Sometimes they erupt like a billion atomic bombs going off at once, producing intense flares of X-rays and UV radiation, and hurling massive clouds of plasma toward Earth.

This is happening right now. Only a few years ago the Sun was in a state of deep quiet, but as 2012 unfolds, the pendulum is swinging. Strong flares are becoming commonplace as sunspots once again pepper the solar disk. Fortunately, Earth is defended from solar storms by a strong, global magnetic field.

In March 2012, those defenses were tested.

At the very beginning of the month, a remarkable sunspot appeared on the Sun’s eastern limb. AR1429, as experts called it, was an angry-looking region almost as wide as the planet Jupiter. Almost as soon as it appeared, it began to erupt. During the period March 2nd to 15th, it rotated across the solar disk and fired off more than 50 flares. Three of those eruptions were X-class flares, the most powerful kind.

As the eruptions continued almost non-stop, Earth’s magnetic field was buffeted by coronal mass ejections or “CMEs.” One of those clouds hit Earth’s magnetosphere so hard, our planet’s magnetic field was sharply compressed, leaving geosynchronous satellites on the outside looking in. For a while, the spacecraft were directly exposed to solar wind plasma.

Charged particles propelled by the blasts swirled around Earth, producing the strongest radiation storm in almost 10 years. When those particles rained down on the upper atmosphere, they dumped enough energy in three days alone (March 7-10) to power every residence in New York City for two years. Bright auroras circled both poles, and Northern Lights spilled across the Canadian border into the lower 48 states. Luminous sheets of red and green were sighted as far south as Nebraska. When all was said and done, the defenses held—no harm done.

This wasn’t the strongest solar storm in recorded history—not by a long shot. That distinction goes to the Carrington Event of September 1859 when geomagnetic activity set telegraph offices on fire and sparked auroras over Mexico, Florida, and Tahiti. Even with that in mind, however, March 2012 was remarkable.

It makes you wonder, what if? What if Earth didn’t have a magnetic field to fend off CMEs and deflect the most energetic particles from the Sun.

The answer might lie on Mars. The red planet has no global magnetic field and as a result its atmosphere has been stripped away over time by CMEs and other gusts of solar wind. At least that’s what many researchers believe. Today, Mars is a desiccated and apparently lifeless wasteland.

Only 93 million miles from Earth, a G-type star is acting up. Thank goodness for magnetism.

With your inner and outer children, read, watch, and listen in to “Super Star Meets the Plucky Planet,” a rhyming and animated conversation between the Sun and Earth, at

This article was provided by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

March 6, 2012, solar flare, as seen by the Solar Dynamics Observatory. Multiple-wavelength view of X5.4 solar flare on March 6, captured by the Solar Dynamics Observatory (SDO) in multiple wavelengths (94, 193, 335 angstroms). Credit: NASA/SDO/AIA

June 1, 2012

How Many Discoveries Can You Make in a Month?

by Dr. Tony Phillips

This year NASA has announced the discovery of 11 planetary systems hosting 26 planets; a gigantic cluster of galaxies known as "El Gordo;" a star exploding 9 billion light years away; alien matter stealing into the solar system; massive bullets of plasma racing out of the galactic center; and hundreds of unknown objects emitting high-energy photons at the edge of the electromagnetic spectrum.

That was just January.

Within NASA's Science Mission Directorate, the Astrophysics Division produces such a list nearly every month. Indeed, at this very moment, data is pouring in from dozens of spacecraft and orbiting observatories.

"The Hubble, Spitzer, Chandra, and Fermi space telescopes continue to make groundbreaking discoveries on an almost daily basis," says NASA Administrator Charlie Bolden1.

NASA astrophysicists and their colleagues conduct an ambitious research program stretching from the edge of the solar system to the edge of the observable Universe. Their work is guided in large part by the National Research Council's Decadal Survey of Astronomy and Astrophysics, which identified the following priorities:

  • Finding new planets--and possibly new life--around other stars.
  • Discovering the nature of dark energy and dark matter.
  • Understanding how stars and galaxies have evolved since the Big Bang.
  • Studying exotic physics in extreme places like black holes.
Observing time on Hubble and the other "Great Observatories" is allocated accordingly.

Smaller missions are important, too: The Kepler spacecraft, which is only "medium-sized" by NASA standards, has single-handedly identified more than 2300 planet candidates. Recent finds include planets with double suns, massive "super-Earths" and "hot Jupiters," and a miniature solar system. It seems to be only a matter of time before Kepler locates an Earth-sized world in the Goldilocks zone of its parent star, just right for life.

A future astrophysics mission, the James Webb Space Telescope, will be able to study the atmospheres of many of the worlds Kepler is discovering now. The telescope's spectrometers can reveal the chemistry of distant exoplanets, offering clues to their climate, cloud cover, and possibilities for life.

That's not the telescope's prime mission, though. With a primary mirror almost 3 times as wide as Hubble's, and a special sensitivity to penetrating infrared radiation, Webb is designed to look into the most distant recesses of the universe to see how the first stars and galaxies formed after the Big Bang. It is, in short, a Genesis Machine.

Says Bolden, "We're on track in the construction of the James Webb Space Telescope, the most sophisticated science telescope ever constructed to help us reveal the mysteries of the cosmos in ways never before possible." Liftoff is currently scheduled for 2018.

How long will the list of discoveries be in January of that year? Stay tuned for Astrophysics.

For more on NASA's astrophysics missions, check out Kids can get some of their mind-boggling astrophysics questions answered by resident Space Place astrophysicist "Dr. Marc" at

[1] Bolden made these statements in an April 20th editorial he co-authored with John Holdren, Director of the Office of Science and Technology Policy:

This article was provided by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Artist's concept of a four-star system called HD 98800. Artist’s concepts such as this one are based on infrared spectrometer data from NASA’s Spitzer Space Telescope. This rendering depicts a quadruple-star system called HD 98800. The system is approximately 10 million years old and is located 150 light-years away in the constellation Crater. Credit: NASA/JPL-Caltech/T. Pyle (SSC)