Next Launch

Total Students

2,609

Total Launches

683

Eggs Survived

418 61.2%

Rockets Survived

536 78.5%

Jan. 1, 2015

Minor Mergers have Massive Consequences for Black Holes

by Dr. Ethan Siegel

When you think of our sun, the nearest star to our world, you think of an isolated entity, with more than four light years separating it from its next nearest neighbor. But it wasn't always so: billions of years ago, when our sun was first created, it very likely formed in concert with thousands of other stars, when a giant molecular cloud containing perhaps a million times the mass of our solar system collapsed. While the vast majority of stars that the universe forms - some ninety - five percent - are the mass of our sun or smaller, a rare but significant fraction are ultra - massive, containing tens or even hundreds of times the mass our star contains. When these stars run out of fuel in their cores, they explode in a fantastic Type II supernova, where the star's core collapses. In the most massive cases, this forms a black hole.

Over time, many generations of stars - and hence, many black holes - form, with the majority eventually migrating towards the centers of their host galaxies and merging together. Our own galaxy, the Milky Way, houses a supermassive black hole that weighs in at about four million solar masses, while our big sister, Andromeda, has one nearly twenty times as massive. But even relatively isolated galaxies didn't simply form from the monolithic collapse of an isolated clump of matter, but by hierarchical mergers of smaller galaxies over tremendous timescales. If galaxies with large amounts of stars all have black holes at their centers, then we should be able to see some fraction of Milky Way - sized galaxies with not just one, but multiple supermassive black holes at their center!

It was only in the early 2000s that NASA's Chandra X - ray Observatory was able to find the first binary supermassive black hole in a galaxy, and that was in an ultra - luminous galaxy with a double core. Many other examples were discovered since, but for a decade they were all in ultra - massive, active galaxies. That all changed in 2011, with the discovery of two active, massive black holes at the center of the regular spiral galaxy NGC 3393, a galaxy that must have undergone only minor mergers no less than a billion years ago, where the black hole pair is separated by only 490 light years! It's only in the cores of active, X - ray emitting galaxies that we can detect binary black holes like this. Examples like NGC 3393 and IC 4970 are not only confirming our picture of galaxy growth and formation, but are teaching us that supermassive relics from ancient, minor mergers might persist as standalone entities for longer than we ever thought!

Check out some cool images and artist reconstructions of black holes from Chandra: http://chandra.harvard.edu/photo/category/blackholes.html

Kids can learn all about Black Holes from this cool animation at NASA?s Space Place: http://spaceplace.nasa.gov/black - holes.

This article was provided by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

NGC 3393 in the optical (L) by M. Malkan (UCLA), HST, NASA (L); NGC 3393 in the X-ray and optical (R), composite by NASA / CXC / SAO / G. Fabbiano et al. (X-ray) and NASA/STScI (optical). NGC 3393 in the optical (L) by M. Malkan (UCLA), HST, NASA (L); NGC 3393 in the X-ray and optical (R), composite by NASA / CXC / SAO / G. Fabbiano et al. (X-ray) and NASA/STScI (optical).

Feb. 1, 2015

The Heavyweight Champion of the Cosmos

by Dr. Ethan Siegel

As crazy as it once seemed, we once assumed that the Earth was the largest thing in all the universe. 2,500 years ago, the Greek philosopher Anaxagoras was ridiculed for suggesting that the Sun might be even larger than the Peloponnesus peninsula, about 16% of modern-day Greece. Today, we know that planets are dwarfed by stars, which themselves are bound together by the billions or even trillions into galaxies.

But gravitationally bound structures extend far beyond galaxies, which themselves can bind together into massive clusters across the cosmos. While dark energy may be driving most galaxy clusters apart from one another, preventing our local group from falling into the Virgo Cluster, for example, on occasion, huge galaxy clusters can merge, forming the largest gravitationally bound structures in the universe.

Take the "El Gordo" galaxy cluster, catalogued as ACT-CL J0102-4915. It´s the largest known galaxy cluster in the distant universe. A galaxy like the Milky Way might contain a few hundred billion stars and up to just over a trillion (1012) solar masses worth of matter, the El Gordo cluster has an estimated mass of 3 × 1015 solar masses, or 3,000 times as much as our own galaxy! The way we've figured this out is fascinating. By seeing how the shapes of background galaxies are distorted into more elliptical-than-average shapes along a particular set of axes, we can reconstruct how much mass is present in the cluster: a phenomenon known as weak gravitational lensing.

That reconstruction is shown in blue, but doesn't match up with where the X-rays are, which are shown in pink! This is because, when galaxy clusters collide, the neutral gas inside heats up to emit X-rays, but the individual galaxies (mostly) and dark matter (completely) pass through one another, resulting in a displacement of the cluster's mass from its center. This has been observed before in objects like the Bullet Cluster, but El Gordo is much younger and farther away. At 10 billion light-years distant, the light reaching us now was emitted more than 7 billion years ago, when the universe was less than half its present age.

It's a good thing, too, because about 6 billion years ago, the universe began accelerating, meaning that El Gordo just might be the largest cosmic heavyweight of all. There's still more universe left to explore, but for right now, this is the heavyweight champion of the distant universe!

Learn more about "El Gordo" here: http://www.nasa.gov/press/2014/april/nasa-hubble-team-finds-monster-el-gordo-galaxy-cluster-bigger-than-thought/

El Gordo is certainly huge, but what about really tiny galaxies? Kids can learn about satellite galaxies at NASA?s Space Place http://spaceplace.nasa.gov/satellite-galaxies/.

This article was provided by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

X-rays are shown in pink from Chandra; the overall matter density is shown in blue, from lensing derived from the Hubble space telescope. 10 billion light-years distant, El Gordo is the most massive galaxy cluster ever found. Image credit: NASA, ESA, J. Jee (UC Davis), J. Hughes (Rutgers U.), F. Menanteau (Rutgers U. and UIUC), C. Sifon (Leiden Observatory), R. Mandelbum (Carnegie Mellon U.), L. Barrientos (Universidad Catolica de Chile), and K. Ng (UC Davis). X-rays are shown in pink from Chandra; the overall matter density is shown in blue, from lensing derived from the Hubble space telescope. 10 billion light-years distant, El Gordo is the most massive galaxy cluster ever found.

March 1, 2015

The Cold Never Bothered Me Anyway

by Ethan Siegel

For those of us in the northern hemisphere, winter brings long, cold nights, which are often excellent for sky watchers (so long as there's a way to keep warm!) But there's often an added bonus that comes along when conditions are just right: the polar lights, or the Aurora Borealis around the North Pole. Here on our world, a brilliant green light often appears for observers at high northern latitudes, with occasional, dimmer reds and even blues lighting up a clear night.

We had always assumed that there was some connection between particles emitted from the Sun and the aurorae, as particularly intense displays were observed around three days after a solar storm occurred in the direction of Earth. Presumably, particles originating from the Sun - ionized electrons and atomic nuclei like protons and alpha particles - make up the vast majority of the solar wind and get funneled by the Earth's magnetic field into a circle around its magnetic poles. They're energetic enough to knock electrons off atoms and molecules at various layers in the upper atmosphere - particles like molecular nitrogen, oxygen and atomic hydrogen. And when the electrons fall back either onto the atoms or to lower energy levels, they emit light of varying but particular wavelengths - oxygen producing the most common green signature, with less common states of oxygen and hydrogen producing red and the occasional blue from nitrogen.

But it wasn't until the 2000s that this picture was directly confirmed! NASA's Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) satellite (which ceased operations in December 2005) was able to find out how the magnetosphere responded to solar wind changes, how the plasmas were energized, transported and (in some cases) lost, and many more properties of our magnetosphere. Planets without significant magnetic fields such as Venus and Mars have much smaller, weaker aurorae than we do, and gas giant planets like Saturn have aurorae that primarily shine in the ultraviolet rather than the visible. Nevertheless, the aurorae are a spectacular sight in the evening, particularly for observers in Alaska, Canada and the Scandinavian countries. But when a solar storm comes our way, keep your eyes towards the north at night; the views will be well worth braving the cold!

This article was provided by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Auroral overlays from the IMAGE spacecraft. Auroral overlays from the IMAGE spacecraft. Image credit: NASA Earth Observatory (Goddard Space Flight Center) / Blue Marble team.

April 1, 2015

Is the Most Massive Star Still Alive?

by Ethan Siegel

The brilliant specks of light twinkling in the night sky, with more and more visible under darker skies and with larger telescope apertures, each have their own story to tell. In general, a star's color correlates very well with its mass and its total lifetime, with the bluest stars representing the hottest, most massive and shortest-lived stars in the universe. Even though they contain the most fuel overall, their cores achieve incredibly high temperatures, meaning they burn through their fuel the fastest, in only a few million years instead of roughly ten billion like our sun.

Because of this, it's only the youngest of all star clusters that contain the hottest, bluest stars, and so if we want to find the most massive stars in the universe, we have to look to the largest regions of space that are actively forming them right now. In our local group of galaxies, that region doesn't belong to the giants, the Milky Way or Andromeda, but to the Large Magellanic Cloud (LMC), a small, satellite galaxy (and fourth-largest in the local group) located 170,000 light years distant.

Despite containing only one percent of the mass of our galaxy, the LMC contains the Tarantula Nebula (30 Doradus), a star-forming nebula approximately 1,000 light years in size, or roughly seven percent of the galaxy itself. You'll have to be south of the Tropic of Cancer to observe it, but if you can locate it, its center contains the super star cluster NGC 2070, holding more than 500,000 unique stars, including many hundreds of spectacular, bright blue ones. With a maximum age of two million years, the stars in this cluster are some of the youngest and most massive ever found.

At the center of NGC 2070 is a very compact concentration of stars known as R136, which is responsible for most of the light illuminating the entire Tarantula Nebula. Consisting of no less than 72 O-class and Wolf-Rayet stars within just 20 arc seconds of one another, the most massive is R136a1, with 260 times the sun's mass and a luminosity that outshines us by a factor of seven million. Since the light has to travel 170,000 light years to reach us, it's quite possible that this star has already died in a spectacular supernova, and might not even exist any longer! The next time you get a good glimpse of the southern skies, look for the most massive star in the universe, and ponder that it might not even still be alive.

This article was provided by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

The giant star-forming Tarantula Nebula in the Large Magellanic Cloud and the central merging star cluster NGC 2070, containing the enormous R136a1 at the center. Images credit: ESO/IDA/Danish 1.5 m/R. Gendler, C. C. Thöne, C. Féron, and J.-E. Ovaldsen (L), of the giant star-forming Tarantula Nebula in the Large Magellanic Cloud; NASA, ESA, and E. Sabbi (ESA/STScI), with acknowledgment to R. O'Connell (University of Virginia) and the Wide Field Camera 3 Science Oversight Committee (R), of the central merging star cluster NGC 2070, containing the enormous R136a1 at the center.